If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+116x+80=0
a = 24; b = 116; c = +80;
Δ = b2-4ac
Δ = 1162-4·24·80
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(116)-76}{2*24}=\frac{-192}{48} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(116)+76}{2*24}=\frac{-40}{48} =-5/6 $
| 4v+12=62-v | | 2x+1=-7x+4 | | 4d-8=3d+9 | | a/6-7=14 | | 5t+3+5t-9t=3+6 | | 4x+3=9x-14 | | 4v+12=62v | | 2x²-32=256 | | 2(x-1)=9x-3-7x | | 3k-8=27-5k | | -3x-4(-4+2x)=37-4x | | 21+9j-10=27 | | 5/x+5+3/x-4=27/(x+5)(x-4) | | x^2+-6x-72=0 | | 2z-3=6z×25 | | 210=14x | | 0.22(10000)-0.07y=0.03(y+10000) | | 5(2-3x)=2(4x-1) | | 1/2x+3=2+x | | 95=-5(1+5b) | | 2x^-162=0 | | (u+6)(u+3)=0 | | 3(-2x-4)-x=-7x-12 | | 3(=2x-4)-x=-7x-12 | | X+20=2x+4 | | 5(2x+5)-(10x+5)=20 | | 49/56=x/77 | | 3y^+7=82 | | –3x+1+10x=x+4x=x=x=12x | | –3x+1+10x=x+4x=x=x=12x= | | 5k=7k | | 70+20+x=180 |